Note on Metric Dimension

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on Metric Dimension

The metric dimension of a compact metric space is defined here as the order of growth of the exponential metric entropy of the space. The metric dimension depends on the metric, but is always bounded below by the topological dimension. Moreover, there is always an equivalent metric in which the metric and topological dimensions agree. This result may be used to define the topological dimension ...

متن کامل

Note on Non-metric Gravity

We discuss a class of alternative gravity theories that are specific to four dimensions, do not introduce new degrees of freedom, and come with a physical motivation. In particular we sketch their Hamiltonian formulation, and their relation with some earlier constructions. Email address: [email protected]. Supported by VR.

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

On the metric dimension and fractional metric dimension for hierarchical product of graphs

A set of vertices W resolves a graph G if every vertex of G is uniquely determined by its vector of distances to the vertices in W . The metric dimension for G, denoted by dim(G), is the minimum cardinality of a resolving set of G. In order to study the metric dimension for the hierarchical product G2 2 uG1 1 of two rooted graphs G2 2 and G u1 1 , we first introduce a new parameter, the rooted ...

متن کامل

On the metric dimension of convex polytopes ∗

Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let F be a family of connected graphs Gn : F = (Gn)n≥1 depending on n as follows: the order |V (G)| = φ(n) and lim n→∞ φ(n) = ∞ . If there exists a constant C > 0 such that dim(Gn) ≤ C for every n ≥ 1 then we shall say that F has bounded metric dimension. If all graphs in F hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1970

ISSN: 0002-9939

DOI: 10.2307/2036746